Vascular peptide endothelin-1 links fat accumulation with alterations of visceral adipocyte lipolysis.

نویسندگان

  • Vanessa van Harmelen
  • Anna Eriksson
  • Gaby Aström
  • Kerstin Wåhlén
  • Erik Näslund
  • Fredrik Karpe
  • Keith Frayn
  • Tommy Olsson
  • Jonas Andersson
  • Mikel Rydén
  • Peter Arner
چکیده

OBJECTIVE Visceral obesity increases risk of insulin resistance and type 2 diabetes. This may partly be due to a region-specific resistance to insulin's antilipolytic effect in visceral adipocytes. We investigated whether adipose tissue releases the vascular peptide endothelin-1 (ET-1) and whether ET-1 could account for regional differences in lipolysis. RESEARCH DESIGN AND METHODS One group consisted of eleven obese and eleven nonobese subjects in whom ET-1 levels were compared between abdominal subcutaneous and arterialized blood samples. A second group included subjects undergoing anti-obesity surgery. Abdominal subcutaneous and visceral adipose tissues were obtained to study the effect of ET-1 on differentiated adipocytes regarding lipolysis and gene and protein expression. RESULTS Adipose tissue had a marked net release of ET-1 in vivo, which was 2.5-fold increased in obesity. In adipocytes treated with ET-1, the antilipolytic effect of insulin was attenuated in visceral but not in subcutaneous adipocytes, which could not be explained by effects of ET-1 on adipocyte differentiation. ET-1 decreased the expression of insulin receptor, insulin receptor substrate-1 and phosphodiesterase-3B and increased the expression of endothelin receptor-B (ET(B)R) in visceral but not in subcutaneous adipocytes. These effects were mediated via ET(B)R with signals through protein kinase C and calmodulin pathways. The effect of ET-1 could be mimicked by knockdown of IRS-1. CONCLUSIONS ET-1 is released from human adipose tissue and links fat accumulation to insulin resistance. It selectively counteracts insulin inhibition of visceral adipocyte lipolysis via ET(B)R signaling pathways, which affect multiple steps in insulin signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arsenic-stimulated lipolysis and adipose remodeling is mediated by G-protein-coupled receptors.

Arsenic in drinking water promotes a number of diseases that may stem from dysfunctional adipose lipid and glucose metabolism. Arsenic inhibits adipocyte differentiation and promotes insulin resistance; however, little is known of the impacts of and mechanisms for arsenic effects on adipose lipid storage and lipolysis. Based on our earlier studies of arsenic-signaling mechanisms for vascular re...

متن کامل

HIV-associated adipose redistribution syndrome (HARS): etiology and pathophysiological mechanisms

Human immunodeficiency virus (HIV)-associated adipose redistribution syndrome (HARS) is a fat accumulation disorder characterized by increases in visceral adipose tissue. Patients with HARS may also present with excess truncal fat and accumulation of dorsocervical fat ("buffalo hump"). The pathophysiology of HARS appears multifactorial and is not fully understood at present. Key pathophysiologi...

متن کامل

Activation of TRPV1 channel by dietary capsaicin improves visceral fat remodeling through connexin43-mediated Ca2+ Influx

BACKGROUND The prevalence of obesity has dramatically increased worldwide and has attracted rising attention, but the mechanism is still unclear. Previous studies revealed that transient receptor potential vanilloid 1 (TRPV1) channels take part in weight loss by enhancing intracellular Ca2+ levels. However, the potential mechanism of the effect of dietary capsaicin on obesity is not completely ...

متن کامل

Inverse regulation of basal lipolysis in perigonadal and mesenteric fat depots in mice.

Given the strong link between visceral adiposity and (hepatic) insulin resistance as well as liver steatosis, it is crucial to characterize obesity-associated alterations in adipocyte function, particularly in fat depots drained to the liver. Yet these adipose tissues are not easily accessible in humans, and the most frequently studied depot in rodents is the perigonadal, which is drained syste...

متن کامل

A unique defect in the regulation of visceral fat cell lipolysis in the polycystic ovary syndrome as an early link to insulin resistance.

The etiology of polycystic ovary syndrome (PCOS) is unknown. However, PCOS has a strong resemblance to the insulin resistance (metabolic) syndrome, where an increased rate of visceral fat cell lipolysis is believed to play a pathophysiological role. We hypothesized that primary defects in visceral lipolysis might also exist in PCOS. Ten young, nonobese, and otherwise healthy PCOS women were com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 57 2  شماره 

صفحات  -

تاریخ انتشار 2008